Category Archives: machine learning

Measuring and avoiding side effects using relative reachability

A major challenge in AI safety is reliably specifying human preferences to AI systems. An incorrect or incomplete specification of the objective can result in undesirable behavior like specification gaming or causing negative side effects. There are various ways to make the notion of a “side effect” more precise – I think of it as a disruption of the agent’s environment that is unnecessary for achieving its objective. For example, if a robot is carrying boxes and bumps into a vase in its path, breaking the vase is a side effect, because the robot could have easily gone around the vase. On the other hand, a cooking robot that’s making an omelette has to break some eggs, so breaking eggs is not a side effect.

side effects robots

(image credits: 1, 2, 3)

How can we measure side effects in a general way that’s not tailored to particular environments or tasks, and incentivize the agent to avoid them? This is the central question of our latest paper.

Continue reading

Advertisements

Specification gaming examples in AI

Various examples (and lists of examples) of unintended behaviors in AI systems have appeared in recent years. One interesting type of unintended behavior is finding a way to game the specified objective: generating a solution that literally satisfies the stated objective but fails to solve the problem according to the human designer’s intent. This occurs when the objective is poorly specified, and includes reinforcement learning agents hacking the reward function, evolutionary algorithms gaming the fitness function, etc.

While ‘specification gaming’ is a somewhat vague category, it is particularly referring to behaviors that are clearly hacks, not just suboptimal solutions. A classic example is OpenAI’s demo of a reinforcement learning agent in a boat racing game going in circles and repeatedly hitting the same reward targets instead of actually playing the game.

coast_runners

Since such examples are currently scattered across several lists, I have put together a master list of examples collected from the various existing sources. This list is intended to be comprehensive and up-to-date, and serve as a resource for AI safety research and discussion. If you know of any interesting examples of specification gaming that are missing from the list, please submit them through this form.

Thanks to Gwern Branwen, Catherine Olsson, Alex Irpan, and others for collecting and contributing examples!

NIPS 2017 Report

convention_center__hero

This year’s NIPS gave me a general sense that near-term AI safety is now mainstream and long-term safety is slowly going mainstream. On the near-term side, I particularly enjoyed Kate Crawford’s keynote on neglected problems in AI fairness, the ML security workshops, and the Interpretable ML symposium debate that addressed the “do we even need interpretability?” question in a somewhat sloppy but entertaining way. There was a lot of great content on the long-term side, including several oral / spotlight presentations and the Aligned AI workshop.

Continue reading

Portfolio approach to AI safety research

dimensionsLong-term AI safety is an inherently speculative research area, aiming to ensure safety of advanced future systems despite uncertainty about their design or algorithms or objectives. It thus seems particularly important to have different research teams tackle the problems from different perspectives and under different assumptions. While some fraction of the research might not end up being useful, a portfolio approach makes it more likely that at least some of us will be right.

In this post, I look at some dimensions along which assumptions differ, and identify some underexplored reasonable assumptions that might be relevant for prioritizing safety research. (In the interest of making this breakdown as comprehensive and useful as possible, please let me know if I got something wrong or missed anything important.)

Continue reading

Highlights from the ICLR conference: food, ships, and ML security

It’s been an eventful few days at ICLR in the coastal town of Toulon in Southern France, after a pleasant train ride from London with a stopover in Paris for some sightseeing. There was more food than is usually provided at conferences, and I ended up almost entirely subsisting on tasty appetizers. The parties were memorable this year, including one in a vineyard and one in a naval museum. The overall theme of the conference setting could be summarized as “finger food and ships”.

food-and-ships

There were a lot of interesting papers this year, especially on machine learning security, which will be the focus on this post. (Here is a great overview of the topic.)

Continue reading

2016-17 New Year review

2016 progress

Research / career:

  • Got a job at DeepMind as a research scientist in AI safety.
  • Presented MiniSPN paper at ICLR workshop.
  • Finished RNN interpretability paper and presented at ICML and NIPS workshops.
  • Attended the Deep Learning Summer School.
  • Finished and defended PhD thesis.
  • Moved to London and started working at DeepMind.

FLI:

  • Talk and panel (moderator) at Effective Altruism Global X Boston
  • Talk and panel at the Governance of Emerging Technologies conference at ASU
  • Talk and panel at Brain Bar Budapest
  • AI safety session at OpenAI unconference
  • Talk and panel at Effective Altruism Global X Oxford
  • Talk and panel at Cambridge Catastrophic Risk Conference run by CSER

Continue reading

AI Safety Highlights from NIPS 2016

battlo

This year’s Neural Information Processing Systems conference was larger than ever, with almost 6000 people attending, hosted in a huge convention center in Barcelona, Spain. The conference started off with two exciting announcements on open-sourcing collections of environments for training and testing general AI capabilities – the DeepMind Lab and the OpenAI Universe. Among other things, this is promising for testing safety properties of ML algorithms. OpenAI has already used their Universe environment to give an entertaining and instructive demonstration of reward hacking that illustrates the challenge of designing robust reward functions.

I was happy to see a lot of AI-safety-related content at NIPS this year. The ML and the Law symposium and Interpretable ML for Complex Systems workshop focused on near-term AI safety issues, while the Reliable ML in the Wild workshop also covered long-term problems. Here are some papers relevant to long-term AI safety:

Continue reading